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Abstract

This paper presents theoretical and numerical analyses of the sonic point glitch based on some numerical schemes for

the Burgers� equation and the Euler equations in fluid mechanics. The sonic glitch is formed in the sonic rarefaction fan.

It has no any direct connection with the violation of the entropy condition or the size of numerical viscosity of a finite-

difference scheme. Our results show that it is mainly coming from a disparity in wave speeds across the sonic point. If

numerical viscosity depends on the characteristic direction, then the disparity may be formed between the numerical

and physical wave speeds around the sonic point, and triggers the sonic wiggle in the numerical solution. We also find

that the initial data reconstruction technique of van Leer can effectively eliminate the flaw around the sonic point for the

Burgers� equation. Some other possible cures are also suggested.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Although much attention has been paid to capture shock waves and contact discontinuities, the proper
resolution of rarefaction wave has also proved to be difficult. For example, even in the smooth flow region,

such as a high speed expansion wave passing through a corner, the sonic glitch or the so-called ‘‘dog-leg’’

phenomenon, see Fig. 1, has occasionally been observed by Woodward and Colella [29], when they solved

an inviscid flow in a channel containing a forward step. There are other cases, e.g. diffraction of shock

waves in [11,13] and supersonic flows past a circular cylinder [15] where the sonic glitch can arise. Glitches

do not really occur along sonic lines in multi-dimensional flows but only where the normal speed

component is sonic.
0021-9991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
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Fig. 1. Density contours with 32 equally spaced contour lines for the Mach 3 wind tunnel problem [29] calculated by using first-order

accurate Godunov scheme on a uniform grid with Dx = Dy = 1/200. The so-called ‘‘dog-leg’’ phenomenon has been observed near the

sonic line above the corner of the forward step, i.e. the point (0.6,0.2).
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The sonic glitch arises only in the presence of sonic rarefaction waves and is a small non-physically dis-
continuous jump or any visible error around the sonic point generated by numerical methods within a so-

nic rarefaction wave. If the discrete scheme admits expansion shocks, an arbitrarily large jump may be

found where one expects a smooth transition through the sonic point [27]. Toro [24] observed that the so-

nic glitch was associated with almost all upwind shock capturing schemes applied to nonlinear hyperbolic

conservation laws. These schemes are the Godunov method [4], the Engquist–Osher scheme [3,14], the Roe

method [17], and the flux vector splitting (FVS) schemes of Steger and Warming [20], van Leer [26], and

Liou and Steffen [8], etc. Another name for the sonic glitch in the literature is the so-called ‘‘entropy

glitch’’, which seems implicitly to point out the relation between the sonic glitch and the entropy condition
[2,24].

Several authors have paid their attention to sonic-point capturing. van Leer et al. [28] devised a sonic-

point capturing scheme for a hyperbolic system of equations incorporating a source terms by balancing the

flux derivative and the source term in both forward- and backward-moving parts of the transonic expansion

fan. An effective absolute value introduced by them is precisely equivalent to the modified absolute value

proposed by Harten [5], see (2.25). Roe [18] gave a close study of the scalar case and a corresponding exten-

sion to the case of a system of equations. According to the decay rate criterion, he modified the numerical

fluxes of first-order and second-order upwind schemes in different ways. In order to obtain good results, the
numerical flux of first-order schemes is modified at the sonic point and at both of its neighbors, but

modification of second-order schemes is done only at the sonic point. Liu and Liou [9] proposed a new

calculation method for the eigenvalues at the cell interface and gave smooth transonic solutions to several

one- and two-dimensional problems. The new positive and negative eigenvalues at the sonic cell face are

continuous, and equal to the old ones in the non-sonic region such that the scheme accuracy remains essen-

tially unchanged. Recently, Moschetta and Gressier [10,11] showed that the sonic glitch was not due to the

non-smoothness of the flux function in the approximate Riemann solutions at the sonic point. Based on the

different numerical performance of the gas-kinetic schemes and the upwind-differencing schemes around the
sonic point, they tried to fix the glitch by borrowing a kinetic pressure correction term from the gas-kinetic

scheme and applied it to the upwind-differencing schemes. Up to now, to our knowledge, no explicit reason

for the glitch formation was given there.

In this paper, according to theoretical and numerical analyses of the sonic point glitch based on several

numerical schemes for the inviscid Burgers� equation and the Euler equations, for the first time we are going

to point out the physical reason underlying the sonic glitch. Our results will show that if numerical viscosity
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of a numerical scheme depends on the characteristic direction, then the disparity may be produced between

the numerical and physical wave speeds around the sonic point, and the sonic wiggle is triggered in the sonic

rarefaction fan due to slower approximate wave speeds. Moreover, we also show that van Leer�s MUSCL

(monotonic upstream-centered scheme for conservation laws) scheme [25] for the Burgers� equation does

not produce the sonic glitch, but Harten�s TVD (total variation diminishing) scheme [5] cannot do it. Some
other possible cures are also considered.

This paper is organized as follows. In Section 2, we study the formation of the sonic glitch in the

case of the inviscid Burgers� equation. Several well-known schemes are analyzed theoretically and

numerically for almost all possible cases. Section 3 analyzes the formation of the sonic glitch in the

Euler equations of gas dynamics. It is a mimic extension of the result in form given in Section 2. Sev-

eral possible cures of the sonic glitch are also suggested there. We conclude the paper with a few re-

marks in Section 4.
2. The sonic glitch in the Burgers� Equation

Consider one-dimensional Burgers� equation in the inviscid limit
ou
ot

þ of ðuÞ
ox

¼ 0; ð2:1Þ
with f ðuÞ ¼ 1
2
u2 and initial data u(x,0) = u0(x), where u0(x) is a given function, x 2 R and t > 0.

For hyperbolic conservation laws, the simplest and useful initial value problem is the so-called Riemann

problem for which initial data are of the following form:
u0ðxÞ ¼
uL; x < 0;

uR; x > 0;

�
ð2:2Þ
where uL and uR are two constants. Its solution will be a fundamental component of Godunov type scheme.

The solution u(x,t) to the Riemann problem (2.1) and (2.2) can be given in an explicit form. It is: (i) a rar-

efaction wave solution
uðx; tÞ ¼
uL; x < uLt;
x
t ; uLt 6 x 6 uRt;

uR; x > uRt;

8><>: ð2:3Þ
if uL < uR; (ii) a shock wave solution
uðx; tÞ ¼
uL; x < st;

uR; x > st;

�
ð2:4Þ
if uL > uR, where s denotes speed of shock wave satisfying
sðuL � uRÞ ¼ f ðuLÞ � f ðuRÞ:

The sonic point corresponds to a point with f 0(u) ” u = 0, and the location of this point is fixed in space due

to its diminishing wave speed. Thus, for the Riemann problem (2.1) and (2.2), if uL < 0 < uR or uL > 0 > uR,

the solution given in (2.3) or (2.4) is corresponding to a transonic solution. Generally, the sonic glitch does

not arise in any transonic compression region. To confirm it, we do a numerical experiment on computation

of a 2p-periodic problem of the Burgers� equation, see [21], where the 2p-periodic initial data are given as

follows:
u0ðxÞ � 0:5þ sinðxÞ; x 2 ½0; 2pÞ:
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Fig. 2. The computed solutions of the Burgers� equation at t = 0.8 containing a transonic compression wave. They are calculated by

using the LxF scheme, the Godunov scheme (2.14), and the Roe scheme, respectively.
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Fig. 2 shows the numerical solutions with a resolution of 100 grid cells, calculated by using three first-order

accurate schemes, the Godunov method, the Roe scheme, and the Lax–Friedrichs (LxF) scheme,

respectively.

There is a transonic compression wave in the solution at t = 0.8 in the interval [2.8,4.2] before the shock

is formed. Obviously, the sonic glitch is not shown in the computed solution. The reason for that will be

analyzed later in this section.

2.1. The Godunov scheme

In the following, we begin to investigate numerical evolution of the sonic rarefaction wave (2.3) with

uL < 0 < uR. Unless stated otherwise, we will take uR = �uL = 1. Give a uniform partition of the physical

domain R, xj = jh, where h denotes a cell size in space, and j 2 Z. The initial value function

u(x,0) = u0(x) will be approximated by the cell average over each cell Ij ¼ fxjxj � h
2
< x < xj þ h

2
g, i.e.
uhðx; 0Þ ¼
1

h

Z
Ij

u0ðxÞ dx ¼: u0j for x 2 Ij: ð2:5Þ
We assume that the solution at time tn to the Riemann problem of the Burgers� equation (2.1) and (2.2) is
given exactly, i.e.
uðx; tnÞ ¼
uL; x < uLtn;
x
tn
; uLtn 6 x 6 uRtn;

uR; x > uRtn;

8><>: ð2:6Þ
and the time step size s satisfies the CFL condition:
rmax
u

fjaðuÞjg 6 l < 1; ð2:7Þ
where r = s/h, l is the Courant number, and a(u) denotes the characteristic speed, a(u) = f 0(u).

In order to evolve numerically this sonic rarefaction wave, we should project the initial data (2.6) onto

the given uniform grid, following (2.5). Thus, we can represent numerically the initial data (2.6) as a con-
stant state inside each cell Ij. For example, within the expansion fan but away from its two corners, the tail

and the head, the initial data inside the cell Ij are approximated by
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unj ¼
1

h

Z
Ij

x
tn

dx � xj
tn
: ð2:8Þ
These constant states at the right-hand side of the sonic point satisfy uj > 0 and uj < 0 at the left. At a later

time tn + 1 = tn + s, the exact solution becomes
uðx; tnþ1Þ ¼
uL; x < uLtnþ1;
x

tnþs ; uLtnþ1 6 x 6 uRtnþ1;

uR; x > uRtnþ1;

8><>: ð2:9Þ
and the corresponding exact cell-averaged value is
uej ¼
xj

tn þ s
¼ xj

tn

1

1þ s=tn

� �
¼ xj

tn
1� s

tn
þ s

tn

� �2

� s
tn

� �3

þ � � �
 !

; ð2:10Þ
where the superscript e means the exact solution.

The Godunov method for (2.1) can be written in a conservation form:
unþ1
j ¼ unj � r f̂

Gðunj ; unjþ1Þ � f̂
Gðunj�1; u

n
j Þ

� �
; ð2:11Þ
where
f̂
Gðunj ; unjþ1Þ ¼ f vð0; uj; ujþ1Þ

� �
; ð2:12Þ
and v(x/t;uj,uj + 1) denotes the (weak) similarity solution to the Riemann problem of (2.1) with initial data
uðx; tnÞ ¼
uj; x < xjþ1

2
;

ujþ1; x > xjþ1
2
:

(
ð2:13Þ
It means that the Godunov method (2.11) and (2.12) updates the flow variable inside each cell by solving

the exact Riemann problem of (2.1) at each cell boundary xjþ1
2
. For the in-viscid Burgers� equation, we may

have, see [27],
f̂
Gðunj ; unjþ1Þ ¼ max

1

2
ðuþj Þ

2
;
1

2
ðu�jþ1Þ

2

� �
; ð2:14Þ
where u+ = max{u,0} and u� = min{u,0}.

Therefore, on the right-hand side of the sonic point, tn � h > xj > h, the flow variable is updated by using

the Godunov scheme through
unþ1
j ¼ unj þ r bf j�1

2
� bf jþ1

2

� �
¼ xj

tn
þ r

1

2

xj�1

tn

� �2

� 1

2

xj
tn

� �2
 !

¼ xj
tn

1� s
tn

� �
þ sh

2ðtnÞ2
; ð2:15Þ
and on the left side, �tn + h < xj < �h, it is
unþ1
j ¼ unj þ r bf j�1

2
� bf jþ1

2

� �
¼ xj

tn
þ r

1

2

xj
tn

� �2

� 1

2

xjþ1

tn

� �2
 !

¼ xj
tn

1� s
tn

� �
� sh

2ðtnÞ2
: ð2:16Þ
If we define
eue
j ¼

xj
tn

1� s
tn

� �
¼ uej þ Oðs2Þ;
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then we can find from (2.15) and (2.16) that after one time step, the numerical solution unþ1
j is bigger than

the ‘‘exact’’ one eue
j in the region tn � h > xj > h, while smaller than eue

j in the region �tn + h < xj < �h.

Unfortunately, the shift appeared in the approximate solution has opposite signs in the two regions:

x > h and x < �h. Therefore, a jump with the magnitude of sh/(tn)
2 will appear at the sonic point x = 0 after

one evolution time step. As a result, the approximate solution will move upward (or downward) in com-
parison with the ‘‘exact’’ one in the right (or left) region at the next time step. Moreover, the strength of

this jump will tend to zero, as the space size h tends to zero.

Remark 2.1. In the above, euej is a second-order accurate approximation of the exact solution uej in time. It

is possible to improve it by using a higher-order Runge–Kutta time discretization. But, the magnitude of
the relative error unþ1

j � euej is OðhÞ.
An alternative way to understand the sonic glitch formation can be the following. Because the solution is

smooth within the expansion fan, Eq. (2.1) can be rewritten in a non-conservative form as follows:
ou
ot

þ aðuÞ ou
ox

¼ 0; aðuÞ ¼ f 0ðuÞ � u: ð2:17Þ
Hence, the exact wave speed at xj equals to unj ¼ xj=tn when t belongs to the time interval [tn, tn + s). On the

other hand, (2.15) and (2.16) can also be rewritten in a non-conservative form as a finite-difference approx-
imation of (2.17)
unþ1
j ¼

xj
tn
þ r xjþxj�1

2tn

xj�1

tn
� xj

tn

� �
for (2.15);

xj
tn
þ r xjþxjþ1

2tn

xj
tn
� xjþ1

tn

� �
for (2.16):

8><>: ð2:18Þ
Due to the upwind flux (2.14) at a cell interface, the numerical wave propagation speed at xj becomes

(xj + xj�1)/2tn for xj > h, and (xj + xj+1)/2tn for xj < �h. Comparing them with the exact wave speed, we

can find that the magnitude of the numerical wave speed is smaller than the exact wave speed in both

regions, that is to say, 0 < (xj + xj�1)/2tn < xj/tn in the region x > h and xj/tn < (xj + xj+1)/2tn < 0 in the

region x < h. It is worth noting that the speed difference, h/2tn, is independent of the distance to the

sonic point. So, the propagation of the approximate solution undergoes a delay around the sonic point
and generates a wiggle there due to slower wave speeds. Using exact value of the wave speeds to re-

place the numerical ones in (2.18), we may expect to avoid appearance of the sonic glitch. In fact,

we have:
unþ1
j ¼

xj
tn
þ r xj

tn

xj�1

tn
� xj

tn

� �
¼ xj

tn
1� Dt

tn

� �
for unj P 0;

xj
tn
þ r xj

tn

xj
tn
� xjþ1

tn

� �
¼ xj

tn
1� Dt

tn

� �
for unj < 0:

8><>: ð2:19Þ
To validate the theoretical analysis, some numerical experiments are conducted here. We take tn = 0.1,

l = 0.9, and 150 cells. Figs. 3 and 4 show the numerical solutions (‘‘circle’’) at t = tn + 0.9 calculated by

using the Godunov method and the Roe scheme, respectively. For comparison, the exact solution (‘‘solid

line’’) is also given there. Obviously, the sonic glitch is formed around the sonic point x = 0. It is in accord-
ance with the theoretical one. The jump around the sonic point in Fig. 4 becomes very large such that the

numerical solution is unacceptable. In Fig. 5 we give the corresponding actual error plots. The result shows

that because local maximum or minimum errors are formed around the sonic point, the error distributions

and the numerical solutions are not monotone with respect to x/t within the expansion fan, i.e. the interval

(�1,1). These errors should tend to zero, as h ! 0. In Fig. 6, we plot the local maximum error around the

sonic point versus the space size in a log scale. Its slope equals approximately to 0.987 that is a numerical

measure of the scheme accuracy. For a rarefaction wave without a sonic point in it, such as a wave with u
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Fig. 3. The computed solutions (‘‘circle’’) of the Burgers� equation at t = tn + 0.9 are given by using the Godunov scheme (2.11) and

(2.12) with 150 grid cells and tn = 0.1. The solid line denotes the exact solution. Left: the solution within the global domain [�2,2];
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Fig. 4. Same as Fig. 3, except for the Roe scheme.
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going from uL = 0.1 to uR = 1.1, the uniform upward shift unþ1
j � uej in this case will not generate any glitch

in this rarefaction wave, see Fig. 7.

Remark 2.2. The above analysis could be applied to the transonic compression problem of the Burgers�
equation. For convenience, we take initial data (at t = tn) as
uðx; tnÞ ¼
uL; x < xL;

� x
tn
; xL 6 x 6 xR;

uR; x > xR;

8><>: ð2:20Þ
where uL = �xL/tn > 0 > �xR/tn = uR, tn > 0. Assuming that �xL and xR are big enough such that the solu-
tion to the Cauchy problem (2.1) and (2.20) is smooth within the sub-domain [tn, tn + s] · (xL,xR), we may
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write Eq. (2.1) and the Godunov scheme in a non-conservative form, respectively. Using the Godunov

scheme, we have
unþ1
j ¼

�xj
tn
þ r �xj�xj�1

2tn

�xj�1

tn
� �xj

tn

� �
for x 2 ðxL; 0Þ;

�xj
tn
þ r �xj�xjþ1

2tn

�xj
tn
� �xjþ1

tn

� �
for x 2 ð0; xRÞ:

8><>: ð2:21Þ
Due to the upwind flux at a cell interface, the numerical wave propagation speed at xj becomes (�xj � xj�1)/

2tn for xj<�h and (�xj � xj+1)/2tn for xj > h. Comparing them with the exact wave speed �xj/tn, we can find

that the numerical wave speeds are faster than the exact wave speeds in both regions, that is to say,

(�xj � xj�1)/2tn > �xj/tn > 0 in the region (xL,�h) and 0 > �xj/tn > (�xj � xj+1)/2tn in the region (h,xR).

Thus, the propagation of the approximate solution undergoes a advance around the sonic point and the
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compression is accelerated. Due to it, the discontinuous jump around the sonic point cannot be observed in

a transonic compression region. For comparison, we show wave propagation speeds for the sonic compres-

sion and rarefaction waves in Fig. 8, where the solid and dotted lines denote the exact and numerical wave

propagation speeds, respectively.
2.2. The central-difference schemes

As we have known, for most upwind schemes, the numerical dissipation goes to a minimum value
around the sonic point [6]. Is the sonic glitch formed due to a smaller numerical viscosity or any upwind

scheme? To answer this question, we check the value of unþ1
j calculated by using the LxF scheme and the

Lax–Wendroff (LW) scheme. The LxF scheme is of a relatively large numerical viscosity, while the LW

scheme is of a smaller viscosity than that of the Godunov scheme. For the LxF scheme, the update of

the variable unþ1
j is
x 

u

0

u

u

x

u

0

u

u

Fig. 8. The wave propagation speeds. Left: a sonic compression wave; right: a sonic rarefaction wave.
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unþ1
j ¼ 1

2
unjþ1 þ unj�1

� �
þ r

2
f ðunj�1Þ � f ðunjþ1Þ
� �

¼ 1

2

xjþ1

tn
þ xj�1

tn

� �
þ r

2

1

2

xj�1

tn

� �2

� 1

2

xjþ1

tn

� �2
 !

¼ xj
tn

1� s
tn

� �
¼ uej þ Oðs2Þ; ð2:22Þ
in the region tn � h > xj > �tn + h. It is worth noting that the variable unþ1
j calculated by the unstable cen-

tral scheme:
unþ1
j ¼ unj þ

r
2

f ðunj�1Þ � f ðunjþ1Þ
� �
equals to (xj/tn)(1 � s/tn) too, although its numerical viscosity is zero. Moreover, the gradients of their solu-

tions equal to (1 � s/tn)/tn within the rarefaction wave region that is a second-order accurate approximation

to the exact one in time. If let s ! 0, then the gradient of the numerical solution computed by the LxF

scheme should tend to the gradient of the exact solution at any time t > tn.

For the Godunov scheme, from (2.15) and (2.16), we may derive the approximate gradient at t = tn + s
within the rarefaction fan as follows:
unþ1
jþ1 � unþ1

j

h
¼

1
tnþs þ eCsþ Oðs2Þ; near the sonic point;

1
tnþs þ Oðs2Þ; otherwise;

(

where eC ¼ Oð1Þ. Therefore, the approximate gradient at t = T ” tn + Ns within the rarefaction fan becomes
unþN
jþ1 � unþN

j

h
¼

1
T þ Oð1Þ þ OðsÞ; near the sonic point;
1
T þ OðsÞ; otherwise;

(

or
lim
s;h!0

unþN
jþ1 � unþN

j

h
¼

1
T þ Oð1Þ; near the sonic point;
1
T ; otherwise;

(

where Oð1Þ depends on T or N, but does not on the cell number. In Fig. 9, we show the gradients of the
numerical and exact solutions for the sonic rarefaction problem. The numerical solutions are computed

by two difference schemes, the LxF scheme with 10,000 cells and the Godunov scheme with 10,000 cells

as well as 38,440 cells. These numerical results coincide with the above theoretical results.

Similarly, the variable unþ1
j can also be updated by using the LW scheme as
unþ1
j ¼unj þ

r
2

f ðunj�1Þ � f ðunjþ1Þ
� �

þ
raðujþ1

2
Þ

� �2
2

unjþ1 � unj
� �

�
raðuj�1

2
Þ

� �2
2

unj � unj�1

� �
¼ xj
tn
þ r

2

1

2

xj�1

tn

� �2

� 1

2

xjþ1

tn

� �2
 !

þ
r2 unjþ1 þ unj
� �2

8

xjþ1

tn
� xj

tn

� �
�
r2 unj þ unj�1

� �2
8

xj
tn
� xj�1

tn

� �

¼ xj
tn

1� s
tn
þ s

tn

� �2
 !

¼ uej þ Oðs3Þ; ð2:23Þ
in both region tn � h > xj > �tn + h. From (2.22) and (2.23), it is not difficult to find that there is neither

additional term sh=2t2n, nor the sonic glitch. The gradient of the solution of the LW scheme equals to

(1 � (s/tn) + (s/tn)2)/tn within the rarefaction wave region that is a third-order accurate approximation to

the exact one in time. When s!0, it should tend to the gradient of the exact solution too. The numerical
solutions shown in Fig. 10 are consistent with this theoretical analysis. They are obtained by using the LxF



Fig. 9. The gradients of the numerical solutions for the sonic rarefaction problem computed by using the LxF scheme with 10,000 cells

(left) and the Godunov scheme with 10,000 cells as well as 38,440 cells.
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Fig. 10. Same as Fig. 3, except for the LxF scheme (left) and the LW scheme (right), respectively.
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scheme (left) and the LW scheme (right), respectively. From Fig. 11, we may observe that there is no local

extremum in the actual error profile near the sonic point.

2.3. The other schemes

We may further show that the glitch is closely associated with the upwind flux, even though the numer-

ical viscosity is big enough. Consider a general three-point scheme
unþ1
j ¼ unj þ

r
2

f ðunj�1Þ � f ðunjþ1Þ
� �

þ
Qðmjþ1

2
Þ

2
unjþ1 � unj
� �

�
Qðmj�1

2
Þ

2
unj � unj�1

� �
; ð2:24Þ



Fig. 11. Same as Fig. 5, except for the LxF scheme (left) and the LW scheme (right), respectively.
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where Qjþ1
2
¼ Qðmjþ1

2
Þ is usually referred as numerical viscosity, m = ra. According to the above analysis, if

we take Qjþ1
2
¼ 1

2
ðQG

jþ1
2
þ QL

jþ1
2
Þ or 1

2
ðQR

jþ1
2
þ QL

jþ1
2
Þ, then a shift, sh/2(tn)

2, will be also formed when the variable

unþ1
j is updated, where QG

jþ1
2
; QR

jþ1
2
; and QL

jþ1
2
denote the numerical viscosities of the Godunov method, the

Roe scheme, and the LxF scheme, respectively. We have used these two weighted average schemes to solve

the above problem with same grid points and parameters. Fig. 12 only show close-up of the solutions and

error given by the weighted average scheme with Q ¼ 1
2
ðQR þ QLÞ. Although the error around the sonic

point is very small and almost invisible, local extrema still exist and the solution is not monotone with re-

spect to x/t along the transonic expansion fan.
In the literature, to cure the sonic glitch, an entropy fix is usually added to modify numerical viscosity of

a finite-difference scheme, see e.g. [27]. For the traditional upwind scheme, we may use Harten�s entropy fix

[5], i.e.,
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

u

x

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

er
or

r

x
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average scheme with Q ¼ 1
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QðxÞ ¼
jxj if jxj > �;
x2þ�2

2�
if jxj 6 �;

(
ð2:25Þ
where � is a given positive constant. In fact, after doing that, it is seen that the numerical viscosity of the

scheme does not depend on the characteristic direction if |x| 6 �. But, there still exists the shift between

the approximate solution and the ‘‘exact’’ solution if tn � h > |x| > � + h. In other words, we can smear

out the non-physical jump or give a smooth transition around the sonic point by adding an entropy fix,

but the error within the sonic rarefaction wave cannot be completely eliminated in theory, except that
the parameter � is big enough such that � + h Ptn � h. It means that the error around the sonic point

may become (almost) invisible, if we take a relatively large �. But, resolution of the tail and head of the

rarefaction wave will also be decreased. Moreover, numerical solutions will also suffer possibly a loss of

monotonicity with respect to x/t along the rarefaction waves. To demonstrate it, in Figs. 13–15, we give

the numerical solutions, corresponding errors, and the gradients of the numerical solutions calculated by

using the Roe scheme with the entropy fix (2.25) for � = 0.1 (left) and � = 0.5 (right), respectively. Obvi-

ously, the numerical solutions with an entropy fix have been improved in comparison with one in Fig. 4,

in particular, the error around the sonic point is almost invisible in the case of � = 0.5. But numerical dis-
sipation of the scheme has also become larger than one in Fig. 4 such that resolution of the tail and head of

the rarefaction waves is decreased. We refer the reader to compare our error plots in Figs. 5 and 14, and

figures given in [24] as well as Section 3 for more computations.

Finally, we consider evolution of the transonic expansion fan by using the MUSCL scheme of van Leer

[25] and the TVD scheme of Harten [5].

Under our assumption, the MUSCL scheme advances the solution via the equation
unþ1
j ¼ unj � r f̂ ðun;L

jþ1
2

; un;R
jþ1

2

Þ � f̂ ðun;L
j�1

2

; un;R
j�1

2

Þ
� �

;

un;L
jþ1

2

¼ unj þ
h
2
Sn
j ; un;R

jþ1
2

¼ unjþ1 �
h
2
Sn
jþ1;
where f̂ jþ1
2
is any numerical flux of three-point conservative schemes, and Sn

j � ou=ox. Here, we take f̂ jþ1
2
as

the numerical flux of the Godunov scheme and Sn
j is defined by
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Fig. 13. Same as Fig. 4, except with an entropy fix. Left: � = 0.1; right: � = 0.5.
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Sn
j ¼

1
h sjþ1

2
minfsjþ1

2
ðuj � uj�1Þ; jujþ1 � ujjg if ðuj � uj � 1Þðujþ1 � ujÞ > 0;

0 otherwise;

(

where sjþ1

2
¼ signðuj þ 1� ujÞ. Within the rarefaction fan away from its two corners, we have
Sn
j ¼

1

tn
:

Hence, (2.15) and (2.16) are replaced by
unþ1
j ¼ xj

tn
þ r

1

2

xj�1

tn
þ h
2tn

� �2

� 1

2

xj
tn
þ h
2tn

� �2
 !

¼ eue
j ; ð2:26Þ
 0.4 0.6 0.8 1.2-1-0.5 0 1.5gxFig. 15. The numerical gradients corresponding toFig. 13 . Left: � = 0.1; right: � = 0.5.
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and
unþ1
j ¼ xj

tn
þ r

1

2

xj
tn
� h
2tn

� �2

� 1

2

xjþ1

tn
� h
2tn

� �2
 !

¼ eue
j ; ð2:27Þ
respectively. It is very obvious that the additional terms in (2.15) and (2.16) have been eliminated. In fact,

the numerical viscosity terms in the MUSCL scheme approximate the Burgers� equation have become zero

within the transonic expansion fan now. The actual error of the MUSCL scheme is presented in Fig. 16. We

can find that local maximum of junþ1
j � uej j is only located at two corners of the rarefaction wave.

The Harten TVD scheme for the inviscid Burgers� equation can be written as follows:
unþ1
j ¼ unj � r f̂

n

jþ1
2
� f̂

n

j�1
2

� �
; ð2:28Þ
where f̂ jþ1
2
is defined by
f̂ jþ1
2
¼ 1

2
f ðujÞ þ f ðujþ1Þ þ gj þ gjþ1 � jaðuÞ þ cjjþ1

2
ðujþ1 � ujÞ

� �
;

gj ¼ sjþ1
2
minfsjþ1

2
egj�1

2
; jegjþ1

2
jg; sjþ1

2
¼ signðegjþ1

2
Þ;

egjþ1
2
¼ 1

2
jaðuÞj � raðuÞ2
� �

jþ1
2

ðujþ1 � ujÞ;

cjþ1
2
¼

ðgjþ1 � gjÞ=ðujþ1 � ujÞ; ujþ1 6¼ uj;

0; ujþ1 ¼ uj:

�

Within the rarefaction fan away from its two corners, we have
gj ¼
h

2rtn
min ðjruj � ðruÞ2Þjþ1

2
; ðjruj � ðruÞ2Þj�1

2

n o
;

which depends strongly on the characteristic direction and is highly nonlinear. Thanks to this, it is difficult

to give exactly a simple representation of the solution unþ1
j . Here, we only plot the computed error unþ1

j � uej
in Fig. 16. The sonic glitch has been formed by the TVD scheme of Harten.
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Fig. 16. Same as Fig. 4, except for the MUSCL scheme of van Leer (left) and the Harten TVD scheme [5] (right).
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From the above analysis, we can conclude that the sonic glitch is not left from any initial discontinuous

data of a shock tube problem. Even started from the continuous exact rarefaction wave, a glitch can still be

formed. The sonic glitch affects the upwind flux and not the central-difference method, such as the LxF

scheme and the LW scheme as well as the central scheme with zero viscosity, because they do not depend

on the characteristic direction. The sonic glitch has no any direct connection with the violation of the en-
tropy condition or the size of numerical viscosity of a finite-difference scheme. Glitch may also be formed by

several ‘‘good’’ schemes, such as the Godunov scheme and the Engquist–Osher scheme as well as the high

resolution scheme of Harten. The sonic glitch is mainly coming from the disparity wave speeds across the

sonic point in a transonic expansion fan. If a viscous governing equation is solved by a central-difference

scheme, there will not have a clear upwind wave propagation direction at a cell interface; and we may ex-

pect that the glitch is not formed. A suitable entropy fix can be used to give a smooth transition around the

sonic point, but the disparity wave speeds are still existing generally and it will decrease resolution of two

corners of rarefaction wave. The initial data reconstruction technique of van Leer can be used to eliminate
the sonic glitch when we solve the inviscid Burgers� equation.
3. The sonic glitch in the Euler equations

In this section we begin to analyze rarefaction wave in the Euler equations
oU
ot

þ oF ðUÞ
ox

¼ 0; ð3:1Þ
where
U ¼ ½q; qu;E�T; F ðUÞ ¼ ½qu; qu2 þ p; uðE þ pÞ�T: ð3:2Þ

Here q is the fluid density, u is the velocity, p is the pressure and E denotes the total energy. To close this

system, we need an equation of state to relate the pressure to the total energy:
p ¼ ðc� 1Þ E � 1

2
qu2

� �
;

where c denotes the ratio of the specific heats. The Jacobian matrix A(U) = oF(U)/oU has three real

eigenvalues:
k1 ¼ u� a; k2 ¼ u; k3 ¼ uþ a;
where a denotes the sound speed, a ¼
ffiffiffiffiffiffiffiffiffiffi
cp=q

p
.

In the following, we will solve the Toro�s shock tube problem for a perfect gas with c = 1.4 and initial

data
ðq; u; pÞðx; 0Þ ¼
ð1; 0:75; 1Þ; x < 0:3;

ð0:125; 0; 0:1Þ; x > 0:3:

�
ð3:3Þ
For this standard shock tube problem, the Godunov method generates clearly a sonic glitch at the left run-

ning rarefaction wave around the sonic point x = x0 ” 0.3, where k1 = 0. The numerical solutions calculated

by the Godunov method are shown in Fig. 17. We also refer the reader to [24] for more computed results.

The reason for the glitch formation in the Euler solution is basically same as that in the Burgers� equation,
but the theoretical analysis is more complex because there are three characteristic directions at each point

(x,t). In the following, we can only give a mimic analysis. For the above shock tube problem, the left run-

ning rarefaction wave is constructed by the characteristic wave with speed k1 = u � a. For this wave, the

exact solution of the velocity field u is a similarity solution (see e.g. [24, p. 135], as well as [1])



Fig. 17

line de
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uðx; tÞ ¼ 2

cþ 1
aL þ

c� 1

2
uL þ x� x0

t

� �
; ð3:4Þ
where aL is the sound speed computed according to the initial left state. The exact sound speed is
aðx; tÞ ¼ 2

cþ 1
aL þ

c� 1

2
uL �

x� x0
t

� �� �
:

Therefore, similar to the Burgers� equation, the characteristic wave speed k1 in the left rarefaction wave

equals to:
k1 ¼ uðx; tÞ � aðx; tÞ ¼ x� x0
t

: ð3:5Þ
To clarify the problem, we use the Steger–Warming (S–W) FVS scheme and the Roe scheme as two exam-

ples. The S–W FVS scheme satisfies the following proposition [22].

Proposition 3.1. The macroscopic conservative variables U = [q,qu,E]T and the associated split flux

component F± in the Steger–Warming FVS scheme can be written as follows:
U ¼
X3
k¼1

U ðkÞ; F �ðUÞ ¼
X3
k¼1

F ðkÞ;�ðUÞ; F ðkÞ;�ðUÞ ¼
X3
k¼1

k�k U
ðkÞ; ð3:6Þ
where
U ð2Þ ¼ c� 1

c

q

qk2
1
2
qðk2Þ2

0B@
1CA; U ðkÞ ¼ 1

2c

q

qkk
1
2
qðkkÞ2 þ cð3�cÞ

2
qe

0B@
1CA; k ¼ 1 or 3: ð3:7Þ
Here, k�k ¼ 1
2
ðkk � jkkjÞ.

This proposition shows that the flow inside each cell can be considered as consisting of three particles

and each one is associated with its individual mass, momentum, and the energy, i.e. U(k). Their speeds

are kk, k = 1,2,3, respectively. The fluxes are equal to the particle variable U(k) multiplied by the

corresponding particle velocity.
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Since the characteristic wave speed k1 is linearly distributed with respect to (x � x0)/t in the rarefaction

wave, see Eq. (3.5), after numerical discretization at a cell interface the wave propagation speed of the Rie-

mann solver becomes
ðk1Þnjþ1
2
¼

ðk1Þj �
xj�x0

t

� �
; in the supersonic region u > a;

ðk1Þjþ1 �
xjþ1�x0

t

� �
; in the subsonic region u < a;

(
ð3:8Þ
and the flux F(1) = F(1),+ + F(1),� in the vicinity of the first rarefaction wave is approximated as
F ð1Þ
jþ1

2

�
xj�x0

t

� �
U ðkÞ

j ; in the supersonic region u > a;
xjþ1�x0

t

� �
U ðkÞ

jþ1; in the subsonic region u < a:

(
ð3:9Þ
Hence, the magnitude of the numerical wave speed at a cell interface xjþ1
2
is smaller than the exact one,

ðk1Þe ¼ ððxjþ1
2
� x0Þ=tÞ, in both the supersonic and subsonic regions. The velocity difference

ðk1Þnjþ1
2
� ðk1Þejþ1

2
will be proportional to h in both regions. As a result, the sonic glitch will be formed around

the sonic point x = x0, where u = a. The disparity in the characteristic wave speed k1 is clearly demonstrated

in the right picture of Fig. 17, where the numerical distribution u � a is above the exact solution in the

supersonic side, x > x0, and below the exact one in the subsonic side, x < x0, which is similar to that of

the Burgers� equation. According to the above analysis, we can expect that if using the ‘‘exact’’ wave speed
ðk1Þejþ1

2
to replace the approximate one given in (3.8), then we may give an improved solution around the

sonic point. To validate it, we compute the Toro�s shock tube problem by using the Steger–Warming

FVS scheme and its modified version. The profiles of the density and the error, ðk1Þjþ1
2
� ðk1Þejþ1

2
, are shown

in Figs. 18 and 19, respectively. Comparing them, we can find that the error around the sonic point is effi-

ciently reduced by using the ‘‘exact’’ wave speed.

Remark 3.1. It is worth noting that in the above computations we only modify the characteristic wave

speed k1, i.e. define ðk1Þjþ1
2
¼ 1

2
ððk1Þjþ1 þ ðk1ÞjÞ. In practice it seems not be very efficient for a general

problem, especially for a multi-dimensional problem. However, if the values of the three characteristic

speeds are all defined exactly, i.e. ðkkÞjþ1
2
¼ 1

2
ððkkÞjþ1 þ ðkkÞjÞ k ¼ 1; 2; 3; then it is possible to give oscillation

or overshoot near the shock wave when the CFL number is large. We have checked that the overshoot may

be avoided for the Toro�s problem when the CFL number is less than 0.5.
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Fig. 18. Same as Fig. 17, except for the original S–W FVS scheme (left) and the modified S–W FVS scheme (right).
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The Roe scheme for the Euler equation can be described as follows [17,24]:
Unþ1
j ¼ Un

j � r F̂
n

jþ1
2
� F̂

n

j�1
2

� �
; ð3:10Þ
where the numerical flux F̂
n

jþ1
2
is calculated
F̂ jþ1
2
¼ 1

2
F ðUjÞ þ F ðUjþ1Þ �

X3
k¼1

aðkÞ
jþ1

2

jðkkÞjþ1
2
jRðkÞ

jþ1
2

 !
;

where R(1), R(2) and R(3) are corresponding right eigenvectors, i.e.
Rð2Þ ¼ c
qðc� 1ÞU

ð2Þ; RðkÞ ¼ 2c
q
U ðkÞ; k ¼ 1 or 3;
and the wave strengths aðkÞ
jþ1

2

satisfy
Ujþ1 � Uj ¼
X3
k¼1

aðkÞ
jþ1

2

RðkÞ
jþ1

2

:

Thanks to the identity F ðUjþ1Þ � F ðUjÞ ¼ eARoeðUjþ1;UjÞðUjþ1 � UjÞ, the Roe scheme (3.10) can be rewrit-

ten in a non-conservative form
Unþ1
j ¼ Un

j � r
X3
k¼1

ðk�k Þjþ1
2
aðkÞ
jþ1

2

RðkÞ
jþ1

2

þ ðkþk Þj�1
2
aðkÞ
j�1

2

RðkÞ
j�1

2

� �
:

It means that the solution Unþ1
j is updated via propagation of three waves with their individual speeds

ðk�k Þjþ1
2
or ðkþk Þj�1

2
; k ¼ 1; 2; 3. Because the actual wave speed at (xj,tn) should be ðk�k Þj or ðk

þ
k Þj, the magni-

tude of the numerical wave speed at xj is smaller than the exact one, (k1)
e = ((xj � x0)/t), in both the super-

sonic and subsonic regions, and the sonic glitch cannot be avoided.

Finally, we conduct some numerical experiments to check if the upwind scheme with an entropy fix, the

MUSCL method of van Leer, and the Harten high resolution scheme influence individually computation of
the sonic rarefaction wave in the Euler equations. For the Euler equations, we cannot strictly prove the fact

that the MUSCL method can fully eliminate the sonic glitch around the sonic point, but we may expect that
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Fig. 20. Same as Fig. 19, except for the S–W FVS scheme with an entropy fix. Left: � = 0.1; right: � = 0.5.
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it can efficiently reduce the numerical error. We calculate the Toro�s problem by the Roe scheme with the

entropy fix (2.25) for � = 0, 0.1, 0.2, and 0.3, respectively. The results are shown in Figs. 21 and 22. Similar

to the case of the Burgers� equation, with an entropy fix, we may smear out the jump or give a smooth tran-

sition around the sonic point with a large �, but there still exists a small numerical error within the sonic

rarefaction waves. Moreover, the numerical solutions shown in Figs. 21 and 22 are not monotone with re-
spect to (x � x0)/t along the rarefaction waves. In Fig. 23, we show the density and characteristic speed k1
calculated by using the MUSCL scheme with the Roe approximate solver and the minmod limiter for the

approximate slope. In our computations, the reconstruction is implemented on the conservative variables.

In Fig. 24, we give the numerical solutions of the Toro�s problem calculated by the Harten UNO scheme

combining the Roe approximate solver with an entropy fix. These results show that the flaw around the

sonic point has been efficiently reduced by using high resolution schemes. In Fig. 20, we also give close-

up of the error for the SW FVS scheme with an entropy fix comparing to ones in Fig. 19.
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Fig. 21. Same as Fig. 17, except for the Roe scheme with an entropy fix. Left: � = 0; right: � = 0.1.
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Fig. 22. Same as Fig. 21, except with different �. Left: � = 0.2; right: � = 0.3.
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In order to avoid the sonic glitch, there still are several different ways to work with.

(a) Change the numerical wave speed. For example, a numerical sound speed ea ¼
ffiffiffiffiffiffiffiffiffiffi
3p=q

p
is introduced in

the Beam scheme [19] and the left moving particle has a velocity u�
ffiffiffiffiffiffiffiffiffiffi
3p=q

p
, which does not go to zero

in the rarefaction wave, see the left pictures in Figs. 25 and 26, which are showing the density calcu-

lated by the Beam scheme and corresponding error.

(b) Do not use the discrete wave speeds u � a, u and u + a in the flux construction at all. For example, the

LxF scheme and the gas-kinetic scheme including the BGK scheme [30] and the KFVS or EFM scheme
[16,12]. The LxF scheme is a central-differencing method, while the gas-kinetic scheme uses a contin-

uous gas distribution equation in the flux evaluation and thus are not fully upwind-differencing in the

sense that there is always a relatively small contribution from downstream even if the local Mach num-

ber is greater than 1 [11]. Based on kinetic terms, Moschetta and Gressier proposed a cure for the sonic



0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

de
ns

ity

x

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

de
ns

ity

x

Fig. 24. The density distributions of the Toro�s shock tube problem calculated by using the Harten UNO scheme combining the Roe

approximate solver with an entropy fix. Left: � = 0; right: � = 0.2.
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point glitch in [10]. Their cure does not add dissipation to the original scheme and has been validated in

two-dimensional case. The right pictures in Figs. 25 and 26 show the density obtained by using the

kinetic FVS scheme and corresponding error.

(c) Use the Eulerian–Lagrangian method, where the characteristic wave speed is changed in a local refer-

ence of frame following the fluid motion, and will never become zero. Consequently, the sonic point

glitch can never occur in Lagrangian computation, as demonstrated by Hui and Kudriakov [7]. They

have computed the Toro�s shock tube problem using the Godunov method in Lagrangian coordinate.

In the two-dimensional simulation, due to the implementation of one-dimensional Riemann solver in

both directions, across the sonic line the disparity in the wave speed generates the ‘‘dog-leg’’ phenomenon.

The non-smoothness of the flow distribution at the sonic point is basically from the upwind flux evaluation

method in the shock capturing schemes. At the sonic point, there is no any intrinsic difference between the
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Fig. 25. Same as Fig. 18, except for the Beam method (left) and the kinetic FVS scheme (right).



Godunov method and many other upwind schemes, such as the Steger–Warming FVS scheme, the van Leer

FVS scheme, the Roe approximate Riemann solver, and the Engquist–Osher scheme, because they all de-

pend closely on the characteristic direction. We have used several schemes to solve the problem of a Mach 3

wind tunnel with a forward step, see [29] for a detailed description of this problem. Figs. 27–29 show the

density contours with 32 equally spaced contour lines calculated by using the first-order accurate S–W FVS

scheme, the second-order accurate MUSCL type Godunov scheme, and the second-order accurate MUSCL
type S–W FVS scheme on a uniform grid with Dx = Dy = 1/200, respectively. The ‘‘dog-leg’’ phenomenon is

efficiently decreased by using the MUSCL technique, although numerical oscillation has been generated by

using the MUSCL type Godunov scheme. The sonic glitch is obviously observed in Fig. 27 near the sonic

line just above the corner of the forward step.
4. Concluding remarks

In this paper, we have analyzed theoretically and numerically several numerical schemes for the Burgers�
equation and the Euler equations in order to give an explanation for the sonic point glitch.

Our results show that there is no any direct connection between the sonic glitch and the violation of the

entropy condition of a numerical scheme. Even for an entropy-satisfying scheme, such as the Godunov

method, the Engquist–Osher scheme, and the weighted average schemes, the sonic glitch is still formed.

With an entropy fix, we may smear out the jump around the sonic point, but in theory, we cannot com-

pletely eliminate the error within the sonic rarefaction waves, except with a relatively large parameter.
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transonic expansion fan. But, the high resolution schemes of Harten cannot eliminate completely the error

in the sonic rarefaction wave, although they can decrease it. It is still difficult to extend this result to the

Euler equations.

Several other possible cures have also been considered, for example: (1) to use the ‘‘exact’’ wave speed to

replace the approximate one; (2) to change the numerical wave speed such as the Beam scheme; (3) not to
use the discrete characteristic wave speeds u � a, u and u + a in the flux construction at all, such as the LxF

scheme and the gas-kinetic scheme; and (4) to use the Eulerian–Lagrangian method, where the character-

istics wave speed is changed in a local reference of frame following the fluid motion.
Acknowledgments

The author thanks K. Xu for his interesting discussion and preparing our old manuscript [23], and W.W.
Liou, J.M. Moschetta, and B. van Leer for their sending him their related papers. The author also want to

thank unknown referees for suggesting more numerical examples as well as correcting English errors in the

manuscript. This research was partially supported by the Special Funds for Major State Basic Research

Projects of China (G1999032801), Key Program of the National Natural Science Foundation of China,

and the Alexander von Humboldt foundation.
References

[1] J.D. Anderson, Modern Compressible Flow with Historical Perspective, McGraw-Hill, New York, 1990.

[2] S.F. Davis, A simplified TVD finite difference scheme via artificial viscosity, SIAM J. Sci. Stat. Comput. 8 (1987) 1–18.

[3] B. Engquist, S. Osher, One sided difference approximations for nonlinear conservation laws, Math. Comp. 36 (1981) 321–351.

[4] S.K. Godunov, A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics, Mat.

Sb. 47 (1959) 271–306.

[5] A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49 (1983) 357–393.

[6] C. Hirsch, Numerical Computation of Internal and External Flows, vols. 1 and 2, Wiley, New York, 1990.

[7] W.H. Hui, S. Kudriakov, On wall overheating and other computational difficulties of shock-capturing methods, CFD J. 10 (2001)

192–209.

[8] M.S. Liou, C.J. Steffen, A new flux splitting scheme, J. Comput. Phys. 107 (1993) 23–39.

[9] F.J. Liu, W.W. Liou, A new approach for eliminating numerical oscillations of Roe family of schemes at sonic point, AIAA 99-

0301, in: 37th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 1999.

[10] J.M. Moschetta, J. Gressier, The sonic point glitch problems: a numerical solution, in: Charles-Henri Bruneau (Ed.), 16th

International Conference on Numerical Methods in Fluid Dynamics, 1998, pp. 403–408.

[11] J.M. Moschetta, J. Gressier, A cure for the sonic point glitch, Int. J. Comput. Fluid Dynamics 13 (2000) 143–159.

[12] J.-M. Moschetta, D.I. Pullin, A robust diffusive kinetic scheme for the Navier–Stokes/Euler equations, J. Comput. Phys. 133

(1997) 193–204.

[13] J.J. Quirk, A contribution to the great Riemann solver debate, Int. J. Numer. Methods Fluids 18 (1994) 555–574.

[14] S. Osher, F. Solomon, Upwind difference schemes for hyperbolic conservation laws, Math. Comp. 38 (1982) 339–374.

[15] S. Osher, S. Chakravarthy, Upwind schemes and boundary conditions with applications to Euler equations in general geometries,

J. Comput. Phys. 50 (1983) 447–481.

[16] D.I. Pullin, Direct simulation methods for compressible inviscid ideal gas flow, J. Comput. Phys. 34 (1980) 231–244.

[17] P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys. 43 (1981) 357–372.

[18] P.L. Roe, Sonic flux formulae, SIAM J. Sci. Stat. Comput. 13 (1992) 611–630.

[19] R. Sanders, K. Prendergast, The possible relation of the three-kiloparsec arm to explosions in the galactic nucleus, Astrophys. J.

188 (1974) 489–500.

[20] J.L. Steger, R.F. Warming, Flux vector-splitting of the inviscid gas dynamic equations with applications to finite difference

methods, J. Comput. Phys. 40 (1981) 263–293.

[21] H.Z. Tang, T. Tang, Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal.

41 (2003) 487–515.



532 H. Tang / Journal of Computational Physics 202 (2005) 507–532
[22] H.Z. Tang, K. Xu, Pseudoparticle representation and positivity analysis of explicit and implicit Steger–Warming FVS schemes, Z.

Angew. Math. Phys. 52 (2001) 847–858.

[23] H.Z. Tang, K. Xu, An explanation for the sonic point glitch, preprint, 2000. Available from: <http://www.math.ntnu.no/

conservation/>.

[24] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, second ed., Springer, Berlin, 1999.

[25] B. van Leer, Towards the ultimate conservative difference scheme V. A second order sequel to Godunov�s method, J. Comput.

Phys. 32 (1979) 101–136.

[26] B. van Leer, Flux-vector splitting for the Euler equations, Technical Report ICASE 82-30, NASA Langley Research Center, USA,

1982. Also in Proceedings of the 8th International Conference on Numerical Methods in Fluid Dynamics, Springer, Berlin, 1982,

pp. 507–512.

[27] B. van Leer, On the relation between the upwind-differencing schemes of Godunov, Engquist–Osher and Roe, SIAM J. Sci. Stat.

Comput. 5 (1984) 1–20.

[28] B. van Leer, W.T. Lee, K.G. Powell, Sonic-point capturing, AIAA-89-1945-CP, in: AIAA 9th Computational Fluid Dynamics

Conference, Buffalo, NY, 1989.

[29] P. Woodward, P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys. 54 (1984)

115–173.

[30] K. Xu, Gas-Kinetic Schemes for Unsteady Compressible Flow Simulations, VKI Fluid Dynamics Lecture Series, 1998-03, 1998.

Available from: <http://www.math.ust.hk/~makxu>.

http://www.math.ntnu.no/conservation/
http://www.math.ntnu.no/conservation/
http://www.math.ust.hk/~makxu

	On the sonic point glitch
	Introduction
	The sonic glitch in the Burgers rsquo  Equation
	The Godunov scheme
	The central-difference schemes
	The other schemes

	The sonic glitch in the Euler equations
	Concluding remarks
	Acknowledgments
	References


